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Phase-Controlled Circular Array Heating
Equipment for Deep-Seated Tumors:
Preliminary Experiments

GENTEI SATO, reLLow, 1EEE, CHOKICHIRO SHIBATA, SHUICHI SEKIMUKALI,
HIROSHI WAKABAYASHI, KAORU MITSUKA, aND KENJIRO GIGA

Abstract —This paper presents some preliminary results on the develop-
ment of a circular phased-array equipment for heating deep-seated tumors.
It is shown that radiators having sharp directivity are needed to realize
excellent focusing of SAR. Moreover, moment method calculations indi-
cate that linearly polarized helical radiators inversely wound with double
wires possess the desired directivity and the near field pattern. Field
patterns were measured in phantom (plastic cylinders containing saline
water) with a circular array formed by four pairs of azimuthally positioned
radiators. Excellent focusing of SAR was observed. The ratio of valley to
peak value was 0.74. Steering of SAR maximum by phase control was
observed and the distance of movement coincided with that estimated from
phase variation.

I. INTRODUCTION

YPERTHERMIA HAS BEEN shown to be effective

in the treatment of cancer, especially when combined
with chemo- or radio-therapy. Heating instruments consist-
ing of arrays of horn aperture antennas [1], [2], or dipole
antennas [3], [4] have been reported. But these heating
methods which assume small tumor blood flow are not
clinically satisfactory. The blood flow in the peripheral
area of tumors is greater than that in the inner area.
Formation of SAR maximum is required for the selective
heating of tumors including the peripheral area.

The aim of our preliminary experiments is to form SAR
maximum in the phantom by circularly arrayed radiators
and to steer the SAR maximum electronically by phase
control. The following four fundamental approaches were
adopted to achieve this aim:

1) Utilization of longer penetration depth in the human
body afforded by the UHF band (40.68 MHz).

2) Radiators are immersed in water or equivalent
medium to reduce the size of the applicator and to match
the impedance to the human body.

3) Use of linearly polarized helical antennas with nar-
row half power width and small aperture.

4) Use of phase-controlled circular arrays.
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In this paper, the dependency of SAR on the directivity
of individual radiators is described first. It is concluded
that a sharper focusing of SAR can be achieved using
radiators with higher directivity. Secondly, computer simu-
lation of the structure of double-wire helical radiators and
the measured radiation characteristics in water are de-
scribed. On the basis of the above results, SAR in phantom
was measured and formation of SAR maximum was dem-
onstrated. Measuring system, method, and measured re-
sults are reported. Finally, steering the SAR maximum by
phase control is described.

II. DEPENDENCY OF SAR ON THE DIRECTIVITY OF
INDIVIDUAL RADIATORS

In this system, circularly arrayed radiators are used to
form SAR maximum in the center by a superposition of
fields. A simple analysis is applied to describe the depen-
dency of SAR on the directivity of individual radiators.
The radiation pattern of an idealized fundamental radiator
is assumed as follows:

2(8,6) = K sin"g-sin" ¢ (1)

where 8 and ¢ follow usual definition and K is a constant
determined by normalization. Indices » and m are parame-
ters determining the directivity of a radiator. At the point
with distance r from the radiator, the electric field is [3]

R Pr e*jkr
E=VT§_1' - g'(0,9)é (2)

where P, is the radiated power of the radiator, & is the unit
vector in the direction of polarization, { is the intrinsic
admittance of free space, and k is a propagation constant.
The total electric field superimposed by N radiator is

R N Pr e*jkr,
E = - .
,§1 2'”‘{’71 s

1

g'(0,,¢,)é (3)
where i shows the term concerning the ith radiator.

Assuming linear polarization, four pairs of radiator sys-
tems are arranged at equal distance on a circle of 40 cm in
diameter. SAR distribution was calculated for various n
and m in a muscle equivalent medium (Fig. 1). The
frequency is 40.68 MHz. Power to each radiator is constant
for each set of n and m.
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Fig. 3. Radiation characteristics of a B-type helical radiator.

In the case of n =1 and m = 0, which corresponds to an
omnidirectional antenna, SAR distribution is flat. Focus-
ing of SAR appears only for cases of n and m larger than
four. Clearly, sharp directivity is required for focusing. It

- should be noted that the above conclusion is applicable

only to the far-field condition. We must examine whether
the initial assumption is valid in actual cases. '

III.. RADIATION CHARACTERISTICS OF HELICAL
RADIATORS IN WATER

We decided to adopt linearly polarized helical antennas
as radiators because of their sharp directivity and small
aperture. Usually, a helical antenna shows circular polari-
zation, but a linearly polarized helical antenna is obtain-

- able by inverse winding of double wires, such that three

types may be classified according to the feeding method:

A-type: single-wire feed; '

B-type: double-wire single-point feed;

C-type: double-wire double-points feed.
Structures of each type are shown conceptually in Fig, 2.

Current distribution on the antenna wire and radiating
field were calculated by the Moment method [6] for each of
the three types. Optimum conditions for the desired radia-
tion pattern and large polarization ratio were determined,
assuming a medium of water. The best result was observed
for a B-type radiator whose diameter, pitch angle, and turn
numbers of helix are 227 mm, 12.5°, and 3.25 turns,
respectively. Radiation patterns corresponding to ¢ = 90°
and 0 = 90° plane are shown in Fig. 3(a) and (b).

Next, complex field intensities near the helix aperture
are calculated by the same method. Field distribution and
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Fig. 6. Field distribution near the aperture of a helical radiator.
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Fig. 8. Field distribution measuring a system block diagram,

phase shift along the helix axis are shown in Figs. 4 and 5.
Fig. ‘6 shows field distribution in the area near helix
aperture. From the above results we estimated that the
far-field region is at least 25 cm from the helix aperture.

An B-type helical radiator was constructed for trial and
its radiation characteristics were measured in a cistern
whose dimensions are 2m X 2m X 1m. An example is shown
in Fig. 7. Only one radiator was activated; half power
width tends to narrow as numbers of radiators increase. A
Brown antenna was used for measuring field intensity. The
whole antenna system was immersed in pure water for a
reduction -in dimensions, and all the measurements were
also performed in water. '

IV. MEASUREMENT OF SAR FocusING

The preliminary experiment for phase-controlled circular
array heating equipment was done using the system shown
in Fig. 8. A photograph of the system is shown in Fig. 9.
Four pairs of linearly polarized radiators and a plastic
cylinder of 40 cm in diameter filled with 0.35-percent
weight saline water were immersed in the cistern.

As the penetration depth of the electro-magnetic wave at
40.65 MHz is about 65 m, the wave can reach the center of
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Fig. 9. Photograph of the measuring system.

1.0,
0.9]
P 0.81
<G
0.71
0.61
i
05 L—r— - = — R [
-200 -100 0 100 200
X axis mm

Fig. 10. SAR distribution of a 4-pair helical radiator.

the circle (diameter 40 cm) with a very small reduction of
power. Radio frequency power was fed to eight radiators
after passing through the two-way-divider and dual four-
way-dividers. It was previously validated by a network
analyzer that each radiator was in phase at the feed point.
A Brown antenna was used for measuring field intensity.
. All measured values are relative. SAR was calculated from
the measured field intensity.

Fig. 10 shows SAR distribution along the axis of a pair
of radiators facing each other and Fig. 11 shows that in the
perpendicular direction. Symmetry i$ not maintained be-
cause of fluctuation in positioning and dispersion of radia-
tor directivity. But the focusing of SAR is clearly demon-
strated. Though SAR near the plastic wall was high,
cooling by water circulating should solve the problem
during actual body heating.

A new system shown Fig. 12 was devised for achieving
better focusing of SAR. Eight absorbers comprised of
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Fig. 11. SAR measured in a direction perpendicular to that of Fig. 9.
Fig. 12, Field distribution measuring system block diagram W1th eight

absorbers.

plastic cylinders 7.7 cm in diameter and 1.5-percent weight
saline water were placed at appropriate positions between -
radiators. SAR distribution in this case is shown in Fig. 13.
Symmetry of SAR is greatly improved, with accompanying
increase in peak-to-valley ratio of SAR.

V. STEERING THE FOCUSING OF SAR BY
Prase CONTROL

The possibility of electronic steering does not mean only
the positioning of SAR maximum to tumors. Programma-
ble movement of SAR focusing allows a control of temper-
ature distribution in the human body. (

In this preliminary experiment, a pair of radiators were
arranged for simplicity and phase of each radiator was
controlled for steering. One radiator of the pair was set in
lead phase and the other was set in lag phase. Movement of
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Fig. 13. SAR distribution of 4-pair helical radiators with eight

absorbers.

the SAR maximum is observed as shown in Fig. 14. The
distance moved coincides with the estimated value from
phase variation.

VL

Hyperthermia combined with chemo- or radio-therapy is
effective for cancer treatment, but heating technology for
deep-seated tumors is not satisfactory clinically. We aimed

CONCLUSION
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Fig. 14 Steering of SAR characteristics by phase control of one pair of
radiators.

to overcome the barrier and tried to adopt helical radiators
for phase-controlled circular array heating equipment. We
have demonstrated the possibility of SAR focusing and the
possibility to steer focusing electronically. It is anticipated
that heating of deep-seated tumors, including peripheral
area, will be possible in the near future applying this
system to clinical equipment. ‘
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